论文标题

使用神经比估计来重建N体模拟的光环聚类和光晕质量功能

Towards reconstructing the halo clustering and halo mass function of N-body simulations using neural ratio estimation

论文作者

Dimitriou, Androniki, Weniger, Christoph, Correa, Camila A.

论文摘要

高分辨率宇宙学N体模拟是建模暗物质光环的形成和聚类的绝佳工具。这些模拟表明,由一组有效的物理参数控制的光环形成的复杂物理理论。我们的目标是在贝叶斯的情况下提取这些参数及其不确定性。我们通过直接比较从宇宙学模拟中提取的暗物质密度投影图并从分析晕模型产生的密度投影来迈出了自动化此过程的一步。该模型基于两个身体相关函数的玩具实现。为此,我们使用边际神经比估计,这是一种基于模拟的推断的算法,可以通过通过神经网络近似边际可能性与证据比率来估计边缘后期。在这种情况下,我们使用模拟图像训练神经网络,以确定产生给定图像的物理参数的正确值。在宇宙N体仿真图像上使用训练有素的神经网络,我们能够重建光环质量函数,生成类似于N体型仿真图像的模拟图像,并确定这些图像的光环的最低质量,前提是它们与我们的训练数据具有相同的群集。我们的结果表明,这是开发由神经网络协助的宇宙学模拟的道路的一种有希望的方法。

High-resolution cosmological N-body simulations are excellent tools for modelling the formation and clustering of dark matter haloes. These simulations suggest complex physical theories of halo formation governed by a set of effective physical parameters. Our goal is to extract these parameters and their uncertainties in a Bayesian context. We make a step towards automatising this process by directly comparing dark matter density projection maps extracted from cosmological simulations, with density projections generated from an analytical halo model. The model is based on a toy implementation of two body correlation functions. To accomplish this we use marginal neural ratio estimation, an algorithm for simulation-based inference that allows marginal posteriors to be estimated by approximating marginal likelihood-to-evidence ratios with a neural network. In this case, we train a neural network with mock images to identify the correct values of the physical parameters that produced a given image. Using the trained neural network on cosmological N-body simulation images we are able to reconstruct the halo mass function, to generate mock images similar to the N-body simulation images and to identify the lowest mass of the haloes of those images, provided that they have the same clustering with our training data. Our results indicate that this is a promising approach in the path towards developing cosmological simulations assisted by neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源