论文标题
holismokes -ix。强镜参数和地面图像的不确定性的神经网络推断
HOLISMOKES -- IX. Neural network inference of strong-lens parameters and uncertainties from ground-based images
论文作者
论文摘要
对强力透镜进行建模是在天体物理学和宇宙学中进一步应用的必要条件。尤其是在当前和即将进行的调查中的大量检测(例如Rubin Legacy of Paidmand and Time(LSST))中,及时在自动化和快速分析技术中进行调查以外的传统和耗时的Markov Chain Monte Carlo Sampling方法。基于Schuldt等人提出的卷积神经网络(CNN)。 (2021b),我们在这里提出另一个CNN,特别是残留神经网络(RESNET),可以预测一个奇异等等等分等分椭圆形(SIE)配置文件的五个质量参数(镜头中心$ x $ x $和$ y $,ellipticity $ e_x $ e_x $ and $ e_y $ $γ_{ext,2} $)来自地面成像数据。与我们的CNN相反,此重新连接进一步预测每个参数的1 $σ$不确定性。为了培训我们的网络,我们使用Schuldt等人的改进管道。 (2021b)分别使用Hyper Suprime-CAM调查(HSC)的星系和Hubble Ultra Deep Field中的星系的真实图像模拟镜头图像,分别是镜头星系和背景源。我们发现SIE参数的总体回收率非常好,而在预测外部剪切方面仍然存在差异。从我们的测试中,最有可能的低图像分辨率是预测外部剪切的限制因素。鉴于每个系统的毫米秒的运行时间,我们的网络非常适合预测透明瞬变的下一个出现图像和时间延迟。因此,与我们的模拟相比,我们还介绍了网络的性能。我们的重新连接能够预测单个CPU上一秒钟的SIE和剪切参数值,从而使我们能够在不久的将来有效地处理大量预期的星系尺度透镜。
Modeling of strong gravitational lenses is a necessity for further applications in astrophysics and cosmology. Especially with the large number of detections in current and upcoming surveys such as the Rubin Legacy Survey of Space and Time (LSST), it is timely to investigate in automated and fast analysis techniques beyond the traditional and time consuming Markov chain Monte Carlo sampling methods. Building upon our convolutional neural network (CNN) presented in Schuldt et al. (2021b), we present here another CNN, specifically a residual neural network (ResNet), that predicts the five mass parameters of a Singular Isothermal Ellipsoid (SIE) profile (lens center $x$ and $y$, ellipticity $e_x$ and $e_y$, Einstein radius $θ_E$) and the external shear ($γ_{ext,1}$, $γ_{ext,2}$) from ground-based imaging data. In contrast to our CNN, this ResNet further predicts a 1$σ$ uncertainty for each parameter. To train our network, we use our improved pipeline from Schuldt et al. (2021b) to simulate lens images using real images of galaxies from the Hyper Suprime-Cam Survey (HSC) and from the Hubble Ultra Deep Field as lens galaxies and background sources, respectively. We find overall very good recoveries for the SIE parameters, while differences remain in predicting the external shear. From our tests, most likely the low image resolution is the limiting factor for predicting the external shear. Given the run time of milli-seconds per system, our network is perfectly suited to predict the next appearing image and time delays of lensed transients in time. Therefore, we also present the performance of the network on these quantities in comparison to our simulations. Our ResNet is able to predict the SIE and shear parameter values in fractions of a second on a single CPU such that we are able to process efficiently the huge amount of expected galaxy-scale lenses in the near future.