论文标题

非等级$ g $ - 类别的分类(与GermánStefanich共同书写的附录)

Classification of nondegenerate $G$-categories (with an appendix written jointly with Germán Stefanich)

论文作者

Gannon, Tom

论文摘要

我们将一个“密集的开放”类别子集分类为一个还原组的动作,我们将其称为非等级类别,完全根据组的根基准。作为我们方法的应用,我们也: (1)升级金茨堡和洛纳根的等效性,它标识了Bi-Whittaker $ \ Mathcal {d} $ - 在一个还原群体上的模块,该类别的类别为$ \ tilde {w} $ - equivariant冰草,在Diual Cartan subalgebra $ \ Mather上的coblak $ \ matheriant subalgebra $ \ matherfrak} $ \ mathfrak {t}^*// \ \ tilde {w} $,to monoidal等价(其中$ \ tilde {w} $表示扩展的息affine weyl group)和 (2)显示了一个非常中心的捆的抛物面限制,即获得Weyl ofer ofer epivariant结构,以使相关的模棱两可的捆起来降低到粗大的商$ \ mathfrak {t}^*// \ tilde {w} $,提供了对Ben-Zvi-Gunningham对Parabolic Parabolic paraboric parabolicham on parabolicham的猜测的证据。

We classify a "dense open" subset of categories with an action of a reductive group, which we call nondegenerate categories, entirely in terms of the root datum of the group. As an application of our methods, we also: (1) Upgrade an equivalence of Ginzburg and Lonergan, which identifies the category of bi-Whittaker $\mathcal{D}$-modules on a reductive group with the category of $\tilde{W}$-equivariant sheaves on a dual Cartan subalgebra $\mathfrak{t}^*$ which descend to the coarse quotient $\mathfrak{t}^*//\tilde{W}$, to a monoidal equivalence (where $\tilde{W}$ denotes the extended affine Weyl group) and (2) Show the parabolic restriction of a very central sheaf acquires a Weyl group equivariant structure such that the associated equivariant sheaf descends to the coarse quotient $\mathfrak{t}^*//\tilde{W}$, providing evidence for a conjecture of Ben-Zvi-Gunningham on parabolic restriction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源