论文标题
多通道一维连续模型中边界和界面电荷的通用性能
Universal properties of boundary and interface charges in multichannel one-dimensional continuum models
论文作者
论文摘要
我们将最新结果概括为一维单渠道连续体中的边界和界面电荷[Phys。 Rev. B 104,155409(2021)]和多通道紧密结合[Phys。 Rev. B 104,125447(2021)]模型到多通道连续系统的领域。使用边界绿色功能的技术,我们给出了一个严格的证据,即在系统向边界移动时,边界电荷的变化$x_φ\ in [0,l] $由$x_φ$的完美线性函数以及整数值不值得拓扑不变的$ i $ - 所谓的边界不变型。对于潜在幅度较弱的系统,我们还发展了Green基于功能的低能理论,从而使人们可以在低能近似中分析访问多通道连续系统的物理。
We generalize our recent results for the boundary and interface charges in one-dimensional single-channel continuum [Phys. Rev. B 104, 155409 (2021)] and multichannel tight-binding [Phys. Rev. B 104, 125447 (2021)] models to the realm of the multichannel continuum systems. Using the technique of boundary Green's functions, we give a rigorous proof that the change in boundary charge upon the shift of the system towards the boundary by the distance $x_φ\in[0, L]$ is given by a perfectly linear function of $x_φ$ plus an integer-valued topological invariant $I$ -- the so called boundary invariant. For systems with weak potential amplitudes, we additionally develop Green's function-based low-energy theory, allowing one to analytically access the physics of multichannel continuum systems in the low-energy approximation.