论文标题
多方安全的广泛学习系统以保存隐私
Multi-party Secure Broad Learning System for Privacy Preserving
论文作者
论文摘要
多方学习是一种必不可少的技术,可通过整合多个政党的数据来改善学习绩效。不幸的是,直接整合多方数据将无法满足隐私保留要求。因此,保护隐私的机器学习(PPML)成为多方学习的关键研究任务。在本文中,我们提出了一种基于安全多方交互协议的新PPML方法,即多方安全的广泛学习系统(MSBLS),并得出了该方法的安全性分析。现有的PPML方法通常不能同时满足多个要求,例如安全性,准确性,效率和应用程序范围,但是MSBL在这些方面取得了令人满意的结果。它使用交互式协议和随机映射来生成数据的映射功能,然后使用有效的广泛学习来训练神经网络分类器。这是结合安全多方计算和神经网络的第一种隐私计算方法。从理论上讲,此方法可以确保由于加密而不会降低模型的准确性,并且计算速度非常快。我们在三个经典数据集上验证了这一结论。
Multi-party learning is an indispensable technique for improving the learning performance via integrating data from multiple parties. Unfortunately, directly integrating multi-party data would not meet the privacy preserving requirements. Therefore, Privacy-Preserving Machine Learning (PPML) becomes a key research task in multi-party learning. In this paper, we present a new PPML method based on secure multi-party interactive protocol, namely Multi-party Secure Broad Learning System (MSBLS), and derive security analysis of the method. The existing PPML methods generally cannot simultaneously meet multiple requirements such as security, accuracy, efficiency and application scope, but MSBLS achieves satisfactory results in these aspects. It uses interactive protocol and random mapping to generate the mapped features of data, and then uses efficient broad learning to train neural network classifier. This is the first privacy computing method that combines secure multi-party computing and neural network. Theoretically, this method can ensure that the accuracy of the model will not be reduced due to encryption, and the calculation speed is very fast. We verify this conclusion on three classical datasets.