论文标题

tntorch:张张网络学习与pytorch

tntorch: Tensor Network Learning with PyTorch

论文作者

Usvyatsov, Mikhail, Ballester-Ripoll, Rafael, Schindler, Konrad

论文摘要

我们提出了TNTORCH,这是一个张量学习框架,该框架支持统一界面下的多个分解(包括CandeComp/Parafac,Tucker和Tensor Train)。借助我们的图书馆,用户可以通过自动差异,无缝的GPU支持以及Pytorch的API的便利性学习和处理低排名的张量。除分解算法外,tntorch还实施了可区分的张量代数,等级截断,互换性,批处理处理,综合张量算术等。

We present tntorch, a tensor learning framework that supports multiple decompositions (including Candecomp/Parafac, Tucker, and Tensor Train) under a unified interface. With our library, the user can learn and handle low-rank tensors with automatic differentiation, seamless GPU support, and the convenience of PyTorch's API. Besides decomposition algorithms, tntorch implements differentiable tensor algebra, rank truncation, cross-approximation, batch processing, comprehensive tensor arithmetics, and more.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源