论文标题

参数分布家族的离散混合物表示:几何和统计数据

Discrete mixture representations of parametric distribution families: geometry and statistics

论文作者

Baringhaus, Ludwig, Grübel, Rudolf

论文摘要

我们调查了离散混合物表示的存在和属性$p_θ= \ sum_ {i \ in e}w_θ(i)\,q_i $,q_i $,对于给定的家族$p_θ$,$θ\inθ$,概率度量。非中央卡方分布提供了一个经典的例子。我们获得了有关问题的几何和统计方面的存在结果和结果,后者包括Fisher信息的丢失,Rao-Blackwellization,渐近效率和混合概率的非参数最大似然估计。

We investigate existence and properties of discrete mixture representations $P_θ=\sum_{i\in E} w_θ(i) \, Q_i$ for a given family $P_θ$, $θ\inΘ$, of probability measures. The noncentral chi-squared distributions provide a classical example. We obtain existence results and results about geometric and statistical aspects of the problem, the latter including loss of Fisher information, Rao-Blackwellization, asymptotic efficiency and nonparametric maximum likelihood estimation of the mixing probabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源