论文标题
与标准模型分离的食人族暗物质:宇宙学约束
Cannibal dark matter decoupled from standard model: cosmological constraints
论文作者
论文摘要
在低温下与标准模型(SM)颗粒的重力相互作用的内部热量暗物质(DM)可能会在早期宇宙中经历数字变化的自捕获物,最终冻结到观察到的DM丰度。如果这些反应(例如$ 3 \ rightarrow 2 $工艺)发生在DM是非依赖性的情况下,DM会散发自身的冷却,比在食人阶段的标准非相关性要慢得多。如较早的研究所示,如果在物质主导的时期内进行食人相,则结构形成会有很强的限制。考虑到辐射主导的时期中食人相冻结的情况,我们表明与SM脱钩的食人DM可以可行,这与所有当前的宇宙学约束一致。为此,我们解决了DM温度和密度的耦合演化方程,并确定其对不同DM自耦合的丰度。然后,我们从宇宙 - 微波背景功率谱中评估了这些参数的约束,大爆炸核合成限制了相对论自由度的限制,lyman-$α$限制了DM自由流的长度上的lyman- $α$限制了$ 3 \ rightarrow 2 $ 2 $ 2 $ s-s-nitiration $ s-s-and $ s-n unitiact。我们发现,取决于DM自耦合,质量为80 eV至700 tev的标量群体DM可以构成观察到的DM密度并满足所有约束,当初始DM温度($ t _ {\ rm dm} $)比SM SM SM SM SM($ t _} $ smm { SM}/9100 \ Lessim T _ {\ RM DM} \ Lessim \,T _ {\ rm SM} /1.1$。
An internally thermalized dark matter (DM) with only gravitational interaction with the standard model (SM) particles at low temperatures, may undergo number-changing self-scatterings in the early Universe, eventually freezing out to the observed DM abundance. If these reactions, such as a $3 \rightarrow 2$ process, take place when the DM is non-relativistic, DM cannibalizes itself to cool much slower than standard non-relativistic matter during the cannibal phase. As shown in earlier studies, if the cannibal phase takes place during the matter-dominated epoch, there are very strong constraints from structure formation. Considering scenarios in which the cannibal phase freezes out in the radiation-dominated epoch instead, we show that cannibal DM decoupled from the SM can be viable, consistent with all present cosmological constraints. To this end, we solve the coupled evolution equations of the DM temperature and density, and determine its abundance for different DM self-couplings. We then evaluate the constraints on these parameters from the cosmic-microwave background power spectrum, the big-bang nucleosynthesis limits on the relativistic degrees of freedom, the Lyman-$α$ limits on the DM free-streaming length and the theoretical upper bound on the $3 \rightarrow 2$ annihilation rate from $S-$matrix unitarity. We find that depending upon the DM self-couplings, a scalar cannibal DM with mass in the range of around 80 eV to 700 TeV can make up the observed DM density and satisfy all the constraints, when the initial DM temperature ($T_{\rm DM}$) is lower than the SM one ($T_{\rm SM}$), with $T_{\rm SM}/9100 \lesssim T_{\rm DM} \lesssim \,T_{\rm SM}/1.1$.