论文标题
氧气空缺形成和电子重建lanio $ _3 $和lanio $ _3 $/laalo $ _3 $ superlattices
Oxygen vacancy formation and electronic reconstruction in strained LaNiO$_3$ and LaNiO$_3$/LaAlO$_3$ superlattices
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
By using DFT+U, we explore the formation of oxygen vacancies and their impact on the electronic and magnetic structure in strained bulk LaNiO3 and (LaNiO3)$_1$/(LaAlO3)$_1$(001) superlattices. For bulk LaNiO3, we find that epitaxial strain induces a substantial anisotropy in the oxygen vacancy formation energy. In particular, tensile strain promotes the selective reduction of apical oxygen, which may explain why the recently observed superconductivity of infinite-layer nickelates is limited to strained films. For (LaNiO3)$_1$/(LaAlO3)$_1$(001) superlattices, the simulations reveal that the NiO2 layer is most prone to vacancy formation, whereas the AlO2 layer exhibits generally the highest formation energies. The reduction is consistently endothermic, and a largely repulsive vacancy-vacancy interaction is identified as a function of the vacancy concentration. The released electrons are accommodated exclusively in the NiO2 layer, reducing the vacancy formation energy in the AlO2 layer by 70% with respect to bulk LaAlO3. By varying the vacancy concentration from 0% to 8.3% in the NiO2 layer at tensile strain, we observe an unexpected transition from a localized site-disproportionated (0.5%) to a delocalized (2.1%) charge accommodation, a re-entrant site disproportionation leading to a metal-to-insulator transition despite a half-filled majority-spin Ni $e_g$ manifold (4.2%), and finally a magnetic phase transition (8.3%). While a band gap of up to 0.5 eV opens at 4.2% for compressive strain, it is smaller for tensile strain or the system is metallic, which is in sharp contrast to the defect-free superlattice. The strong interplay of electronic reconstructions and structural modifications induced by oxygen vacancies in this system highlights the key role of an explicit supercell treatment and exemplifies the complex response to defects in artificial transition metal oxides.