论文标题
评估二进制脉冲星不对称踢后轨道参数的复杂性
Assessing the complexity of orbital parameters after asymmetric kick in binary pulsars
论文作者
论文摘要
毫秒脉冲星(MSP)参数的动态表征是理解这些系统的关键问题。我们介绍了具有长时间(PORB> 2 d)和圆形(E <0.1)轨道的二元MSP的轨道参数的分析分析,该轨道是由在积聚引起的塌陷(AIC)过程中产生的不对称踢球模型产生的。事实证明,轨道的分布峰值达到p_orb; f <90 d具有强圆形。考虑到有关伴侣分布的不同假设,恒星3M <mcom <5m,二进制会影响最小能量平衡条件的设置。我们的分析方法只是描述不对称踢后所有二进制参数所需的更完整模型的第一种方法。因此,我们还运行了一些数值模拟,以将其结果与分析研究进行比较。在结合可变踢时间和可变的踢矢量方向时,我们的目标是首次启动问题的全部复杂性。实际上,数值模拟显示出类似于混乱散射问题中发现的复杂行为的模式。尽管我们处理确定性问题和有限的轨道,但在AIC过程中,定期的特征轨道在更现实的阶段中发现。此外,整个过程可以显示出与内部踢机制密切相关的复杂行为。这将使我们确定常规轨道及其轨道形态的性质。
The dynamical characterization of the Millisecond Pulsar (MSP) parameters is a key issue in understanding these systems. We present an analytical analysis of the orbital parameters of binary MSPs with long periods (Porb > 2 d) and circular (e < 0.1) orbits, produced by an asymmetric kick model imparted during the Accretion Induced Collapse (AIC) of white dwarfs process. It turns out that the distribution of orbits peaks up to P_orb;f < 90 d with strong circularization. Considering the different assumptions about the distribution of companions He stars 3M< Mcom < 5M, the binary will affect the setups of the balance condition of minimum energy. Our analytical approach is just the first approach to the more complete models required for describing all binary parameters after an asymmetric kick. Therefore, we have also run some numerical simulations in order to compare their results with the analytical studies. We aim to initiate the first exploration of the full complexity of the problem, when combining a variable kick time and a variable kick vector direction. Indeed, the numerical simulations show patterns resembling the complex behavior found in chaotic scattering problems. Although we deal with a deterministic problem and bounded orbits, the regular characteristic orbits are found in more realistic phases during the AIC process. In addition, the overall process can show complex behaviors strongly associated with the internal kick mechanisms. This would lead us to identify the nature of regular orbits and their orbital morphology.