论文标题

部分可观测时空混沌系统的无模型预测

Neural Networks as Paths through the Space of Representations

论文作者

Lange, Richard D., Kwok, Devin, Matelsky, Jordan, Wang, Xinyue, Rolnick, David S., Kording, Konrad P.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Deep neural networks implement a sequence of layer-by-layer operations that are each relatively easy to understand, but the resulting overall computation is generally difficult to understand. We consider a simple hypothesis for interpreting the layer-by-layer construction of useful representations: perhaps the role of each layer is to reformat information to reduce the "distance" to the desired outputs. With this framework, the layer-wise computation implemented by a deep neural network can be viewed as a path through a high-dimensional representation space. We formalize this intuitive idea of a "path" by leveraging recent advances in *metric* representational similarity. We extend existing representational distance methods by computing geodesics, angles, and projections of representations, going beyond mere layer distances. We then demonstrate these tools by visualizing and comparing the paths taken by ResNet and VGG architectures on CIFAR-10. We conclude by sketching additional ways that this kind of representational geometry can be used to understand and interpret network training, and to describe novel kinds of similarities between different models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源