论文标题

与非简单连接的通用叶子的最小双曲线叶的叶拓扑

Leaf topology of minimal hyperbolic foliations with non simply-connected generic leaf

论文作者

Gusmão, Paulo, Cotón, Carlos Meniño

论文摘要

如果不恰当的(定向)表面满足条件$(\ star)$,则如果它们的孤立末端“由属累积”。我们表明,满足这种情况的每个表面都与最小的codimension叶子的叶子的叶子同构,其封闭的$ 3 $ manifold上的通用叶子不简单地连接。此外,上述结果对于一个可计数的非相表面家族(满足$(\ star)$)的任何处方也是如此:它们可以与上述相同的最小化构叶叶子共存。所有给定的例子都是双曲线叶子,这意味着它们接受了持续负弯曲的叶轮riemannian指标。

A noncompact (oriented) surface satisfies the condition $(\star)$ if their isolated ends are ''accumulated by genus''. We show that every surface satisfying this condition is homeomorfic to the leaf of a minimal codimension one foliation on a closed $3$-manifold whose generic leaf is not simply connected. Moreover, the above result is also true for any prescription of a countable family of noncompact surfaces (satisfying $(\star)$): they can coexist in the same minimal codimension one foliation as above. All the given examples are hyperbolic foliations, meaning that they admit a leafwise Riemannian metric of constant negative curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源