论文标题

Kiloneus:实时渲染的多功能神经隐式表面表示

KiloNeuS: A Versatile Neural Implicit Surface Representation for Real-Time Rendering

论文作者

Esposito, Stefano, Baieri, Daniele, Zellmann, Stefan, Hinkenjann, André, Rodolà, Emanuele

论文摘要

基于NERF的技术适合宽和深的多层感知器(MLP),可从任何看不见的观点呈现的连续辐射场。但是,缺乏表面和正常的定义以及较高的渲染时间限制了它们在典型的计算机图形应用程序中的用法。最近已经分别克服了这些限制,但是解决它们仍然是一个空旷的问题。我们提出了Kiloneus,这是一种神经表示,重建一个隐式表面,该表面表示为签名的距离函数(SDF),来自多视图图像,并通过将空间划分为成千上万个微小的MLP,以快速推断为推理,从而实现实时渲染。当我们使用独立模型在本地学习隐式表面时,导致全球相干几何形状是非平凡的,需要在训练期间解决。我们评估了通过遮盖神经网络推断的GPU加速射线掌握仪的渲染性能,在高分辨率下平均为46 fps,证明存储成本与渲染质量之间的折衷是令人满意的。实际上,我们对呈现质量和表面恢复的评估表明,Kiloneus的表现优于单个MLP。最后,为了表现出Kiloneus的多功能性,我们将其集成到一个交互式的途径追踪器中,充分利用其表面正常状态。我们认为我们的工作是全球照明下隐性神经表示实时渲染的至关重要的第一步。

NeRF-based techniques fit wide and deep multi-layer perceptrons (MLPs) to a continuous radiance field that can be rendered from any unseen viewpoint. However, the lack of surface and normals definition and high rendering times limit their usage in typical computer graphics applications. Such limitations have recently been overcome separately, but solving them together remains an open problem. We present KiloNeuS, a neural representation reconstructing an implicit surface represented as a signed distance function (SDF) from multi-view images and enabling real-time rendering by partitioning the space into thousands of tiny MLPs fast to inference. As we learn the implicit surface locally using independent models, resulting in a globally coherent geometry is non-trivial and needs to be addressed during training. We evaluate rendering performance on a GPU-accelerated ray-caster with in-shader neural network inference, resulting in an average of 46 FPS at high resolution, proving a satisfying tradeoff between storage costs and rendering quality. In fact, our evaluation for rendering quality and surface recovery shows that KiloNeuS outperforms its single-MLP counterpart. Finally, to exhibit the versatility of KiloNeuS, we integrate it into an interactive path-tracer taking full advantage of its surface normals. We consider our work a crucial first step toward real-time rendering of implicit neural representations under global illumination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源