论文标题

特征重新校准基于整个幻灯片图像分类的多个实例学习

Feature Re-calibration based Multiple Instance Learning for Whole Slide Image Classification

论文作者

Chikontwe, Philip, Nam, Soo Jeong, Go, Heounjeong, Kim, Meejeong, Sung, Hyun Jung, Park, Sang Hyun

论文摘要

整个幻灯片图像(WSI)分类是诊断和治疗疾病的基本任务;但是,精确标签的策划是耗时的,并限制了完全监督的方法的应用。为了解决这个问题,多个实例学习(MIL)是一种流行的方法,它仅带有幻灯片级标签作为弱监督的学习任务。虽然当前的MIL方法将注意机制的变体应用于具有更强模型的重量实例特征,但对数据分布的属性很少。在这项工作中,我们建议通过使用Max-Instance(关键)功能的统计数据来重新校准WSI袋(实例)的分布。我们假设在二进制MIL中,正袋的特征幅度比负面袋更大,因此我们可以强制执行该模型,以最大程度地利用公制特征损失的袋子之间的差异,该袋子将正面的袋子模型为未分布。为了实现这一目标,与使用单批训练模式的现有MIL方法不同,我们建议平衡批次采样以有效地使用功能丢失,即同时(+/-)袋子。此外,我们采用编码模块(PEM)的位置来建模空间/形态学信息,并通过变压器编码器通过多头自我注意(PSMA)进行汇总。现有基准数据集的实验结果表明我们的方法有效,并且对最先进的MIL方法有所改善。

Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases; but, curation of accurate labels is time-consuming and limits the application of fully-supervised methods. To address this, multiple instance learning (MIL) is a popular method that poses classification as a weakly supervised learning task with slide-level labels only. While current MIL methods apply variants of the attention mechanism to re-weight instance features with stronger models, scant attention is paid to the properties of the data distribution. In this work, we propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature. We assume that in binary MIL, positive bags have larger feature magnitudes than negatives, thus we can enforce the model to maximize the discrepancy between bags with a metric feature loss that models positive bags as out-of-distribution. To achieve this, unlike existing MIL methods that use single-batch training modes, we propose balanced-batch sampling to effectively use the feature loss i.e., (+/-) bags simultaneously. Further, we employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder. Experimental results on existing benchmark datasets show our approach is effective and improves over state-of-the-art MIL methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源