论文标题
作用于弯曲对和克莱恩人的小组
Groups acting on veering pairs and Kleinian groups
论文作者
论文摘要
我们表明,一些具有不变的层压板的层流组是一个双曲线3-孔组。在途中,我们表明,从一对流动的层压板上,可以构建一个织机空间(从Schleimer-Segerman的意义上)作为商。我们的方法不假定任何3个manifold的存在,因此这是一个几何化型结果,并且取代了有关弯曲三角形,伪 - anosov流,繁琐的叶子,绷紧的叶子的一些结果。
We show that some laminar group which has an invariant veering pair of laminations is a hyperbolic 3-orbifold group. On the way, we show that from a veering pair of laminations, one can construct a loom space (in the sense of Schleimer-Segerman) as a quotient. Our approach does not assume the existence of any 3-manifold to begin with so this is a geometrization-type result, and supersedes some of the results regarding the relation among veering triangulations, pseudo-Anosov flows, taut foliations in the literature.