论文标题
改善了Sobolev空间某些子空间上的庞加尔·哈迪(Poincaré-Hardy)不平等现象
Improved Poincaré-Hardy inequalities on certain subspaces of the Sobolev space
论文作者
论文摘要
我们证明了通过贝塞尔(Bessel Pairs)在双曲线空间上Sobolev空间的合适子空间中的Poincaré-Hardy不平等版本改进的版本。结果,我们获得了一种新的Hardy类型不平等,具有改善的常数(比通常的Harty常数)。此外,我们在双曲线空间上得出了一种新的改进的Caffarelli-Kohn-Nirenberg不平等的Caffarelli-Kohn-Nirenberg。
We prove an improved version of Poincaré-Hardy inequality in suitable subspaces of the Sobolev space on the hyperbolic space via Bessel pairs. As a consequence, we obtain a new Hardy type inequality with an improved constant (than the usual Hardy constant). Furthermore, we derive a new kind of improved Caffarelli-Kohn-Nirenberg inequality on the hyperbolic space.