论文标题

DaisyRec 2.0:严格评估的基准测试建议

DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

论文作者

Sun, Zhu, Fang, Hui, Yang, Jie, Qu, Xinghua, Liu, Hongyang, Yu, Di, Ong, Yew-Soon, Zhang, Jie

论文摘要

最近,在推荐系统领域中,一个关键问题迫在眉睫 - 没有进行严格评估的有效基准 - 因此,这会导致不可再生的评估和不公平的比较。因此,我们从实践理论和实验的角度进行研究,目的是为严格的评估做出基准建议。关于理论研究,通过对2017 - 2020年在八个顶级会议上发表的141篇论文进行了详尽的评论,系统地总结了整个评估链中建议性能的一系列超级因素。然后,我们将它们分类为独立于模型和模型依赖性的超因子,并相应地定义和讨论了不同的严格评估模式。在实验研究中,我们通过将这些超级因子整合以进行严格的评估来发布DaisyRec 2.0文库,从而进行了整体经验研究,以揭示不同超级分子对建议性能的影响。在理论和实验研究的支持下,我们最终通过提出标准化程序并在六个数据集上的六个评估指标中提供十个最先进的方法来创建严格评估的基准,以作为以后研究的参考。总体而言,我们的工作阐明了建议评估中的问题,为严格的评估提供了潜在的解决方案,并为进一步调查提供了基础。

Recently, one critical issue looms large in the field of recommender systems -- there are no effective benchmarks for rigorous evaluation -- which consequently leads to unreproducible evaluation and unfair comparison. We, therefore, conduct studies from the perspectives of practical theory and experiments, aiming at benchmarking recommendation for rigorous evaluation. Regarding the theoretical study, a series of hyper-factors affecting recommendation performance throughout the whole evaluation chain are systematically summarized and analyzed via an exhaustive review on 141 papers published at eight top-tier conferences within 2017-2020. We then classify them into model-independent and model-dependent hyper-factors, and different modes of rigorous evaluation are defined and discussed in-depth accordingly. For the experimental study, we release DaisyRec 2.0 library by integrating these hyper-factors to perform rigorous evaluation, whereby a holistic empirical study is conducted to unveil the impacts of different hyper-factors on recommendation performance. Supported by the theoretical and experimental studies, we finally create benchmarks for rigorous evaluation by proposing standardized procedures and providing performance of ten state-of-the-arts across six evaluation metrics on six datasets as a reference for later study. Overall, our work sheds light on the issues in recommendation evaluation, provides potential solutions for rigorous evaluation, and lays foundation for further investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源