论文标题

SSMI:如何使感兴趣的对象消失而不访问对象检测器?

SSMI: How to Make Objects of Interest Disappear without Accessing Object Detectors?

论文作者

Xia, Hui, Zhang, Rui, Kang, Zi, Jiang, Shuliang

论文摘要

对象探测器的大多数黑盒对抗攻击方案主要面临两个缺点:需要访问目标模型并生成效率低下的对抗示例(未能使对象大量消失)。为了克服这些缺点,我们提出了基于语义分割和模型反转(SSMI)的黑框对抗攻击方案。我们首先使用语义分割技术定位目标对象的位置。接下来,我们设计一个邻居背景像素更换,以用背景像素替换目标区域像素,以确保人类视觉不容易检测到像素修饰。最后,我们重建一个可识别的示例,并使用蒙版矩阵在重建的示例中选择像素以修改良性图像以生成对抗性示例。详细的实验结果表明,SSMI可以产生有效的对抗性例子,以逃避人眼的感知并使感兴趣的对象消失。更重要的是,SSMI的表现胜过相同类型的攻击。新标签和消失标签的最大增加为16%,对象检测的MAP指标的最大减少为36%。

Most black-box adversarial attack schemes for object detectors mainly face two shortcomings: requiring access to the target model and generating inefficient adversarial examples (failing to make objects disappear in large numbers). To overcome these shortcomings, we propose a black-box adversarial attack scheme based on semantic segmentation and model inversion (SSMI). We first locate the position of the target object using semantic segmentation techniques. Next, we design a neighborhood background pixel replacement to replace the target region pixels with background pixels to ensure that the pixel modifications are not easily detected by human vision. Finally, we reconstruct a machine-recognizable example and use the mask matrix to select pixels in the reconstructed example to modify the benign image to generate an adversarial example. Detailed experimental results show that SSMI can generate efficient adversarial examples to evade human-eye perception and make objects of interest disappear. And more importantly, SSMI outperforms existing same kinds of attacks. The maximum increase in new and disappearing labels is 16%, and the maximum decrease in mAP metrics for object detection is 36%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源