论文标题

链接光谱不变的渐差和同构表面的渐差渐态

Subleading asymptotics of link spectral invariants and homeomorphism groups of surfaces

论文作者

Cristofaro-Gardiner, Dan, Humilière, Vincent, Mak, Cheuk Yu, Seyfaddini, Sobhan, Smith, Ivan

论文摘要

本文继续研究紧凑型表面上的链路光谱不变,并在我们以前的工作中引入,并证明满足了Weyl定律,在该法律中它们渐近地恢复了卡拉比不变性。在这里,我们在零属的表面上研究了他们的跨渐差。我们表明,渐进式的渐近性是为了平滑的时间依赖时间的哈密顿量,并为具有有限的许多临界值的自主盘图恢复了ruelle不变性。我们推断出,卡拉比同态对紧凑型面积保护的同构同构的群体无限地承认,而卡拉比同构的核心对hameomormormormisms群体并不简单。

This paper continues the study of link spectral invariants on compact surfaces, introduced in our previous work and shown to satisfy a Weyl law in which they asymptotically recover the Calabi invariant. Here we study their subleading asymptotics on surfaces of genus zero. We show the subleading asymptotics are bounded for smooth time-dependent Hamiltonians, and recover the Ruelle invariant for autonomous disc maps with finitely many critical values. We deduce that the Calabi homomorphism admits infinitely many extensions to the group of compactly supported area-preserving homeomorphisms, and that the kernel of the Calabi homomorphism on the group of hameomorphisms is not simple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源