论文标题
一种计算筛选晶体合金可调特性的方法
A method to computationally screen for tunable properties of crystalline alloys
论文作者
论文摘要
通常,高通量计算材料搜索始于从材料数据库中提取的一组散装化合物开始,并且该集对特定应用程序进行了候选材料筛选。相比之下,许多功能材料,尤其是半导体是多种化合物的重型合金或实心溶液,而不是单个散装化合物。为了提高我们设计功能材料的能力,在这项工作中,我们提出了一个框架和开源代码,以自动构建可能的“合金对”和“合金系统”和“合金系统”,并从一组现有的,实验或计算的有序化合物中检测“合金成员”,而无需任何其他其他元数据以外的其他元数据。我们提供分析工具来估计每种合金稳定性。作为演示,我们将此框架应用于“材料”项目数据库中的所有无机材料,以创建一个新的数据库,其中包括600,000多个独特的合金对条目,然后可以在材料发现研究中使用,以搜索具有可调属性的材料。该新数据库已被整合到材料项目网站中,并与相应的材料标识符链接,以供任何用户查询和探索。使用筛选p型透明导电材料的示例,我们演示了使用这种方法如何揭示候选材料系统,否则可能被传统筛选所排除。这项工作奠定了一个基础,材料数据库可以超越化学计量化合物,并对构图可调的材料进行更现实的描述。
Conventionally, high-throughput computational materials searches start from an input set of bulk compounds extracted from material databases, and this set is screened for candidate materials for specific applications. In contrast, many functional materials, and especially semiconductors, are heavily engineered alloys or solid solutions of multiple compounds rather than a single bulk compound. To improve our ability to design functional materials, in this work we propose a framework and open-source code to automatically construct possible "alloy pairs" and "alloy systems" and detect "alloy members" from a set of existing, experimental or calculated ordered compounds, without requiring any additional metadata beyond their crystal structure. We provide analysis tools to estimate stability across each alloy. As a demonstration, we apply this framework to all inorganic materials in the Materials Project database to create a new database of over 600,000 unique alloy pair entries that can then be used in materials discovery studies to search for materials with tunable properties. This new database has been incorporated into the Materials Project website and linked with corresponding material identifiers for any user to query and explore. Using an example of screening for p-type transparent conducting materials, we demonstrate how using this methodology reveals candidate material systems that might otherwise have been excluded by a traditional screening. This work lays a foundation from which materials databases can go beyond stoichiometric compounds, and approach a more realistic description of compositionally tunable materials.