论文标题
通过Koopman操作员理论对软多指抓手的在线建模和控制
Online Modeling and Control of Soft Multi-fingered Grippers via Koopman Operator Theory
论文作者
论文摘要
由于其灵活性和敏捷性,软抓地力越来越多。但是,与软机器人相关的无限二维性和非线性挑战模型以及对软抓手的闭环控制,以执行抓握任务。为了解决此问题,已经提出了数据驱动的方法。大多数数据驱动的方法都依赖于模拟或离线模型学习,因此很难在不明确培训的不同设置中概括在需要在线控制的情况下和在物理机器人测试中。在本文中,我们提出了一种在线建模和控制算法,该算法利用Koopman操作员理论在每个时间步骤实时更新基础动力学的估计模型。然后将学习和连续更新的模型嵌入到在线模型预测控制(MPC)结构中,并部署到软的多指制机器人握把上。为了评估性能,首先将我们的方法的预测准确性与不同数据集之间的其他模型抽取方法进行了比较。接下来,在线建模和控制算法通过最初未知的各种形状和权重的柔软的3指抓握抓握对象进行实验测试。结果表明,使用所提出的方法在抓住不同对象时的成功率很高。可以在https://youtu.be/i2hcmx7zskq上查看样品试验。
Soft grippers are gaining momentum across applications due to their flexibility and dexterity. However, the infinite-dimensionality and non-linearity associated with soft robots challenge modeling and closed-loop control of soft grippers to perform grasping tasks. To solve this problem, data-driven methods have been proposed. Most data-driven methods rely on intensive model learning in simulation or offline, and as such it may be hard to generalize across different settings not explicitly trained upon and in physical robot testing where online control is required. In this paper, we propose an online modeling and control algorithm that utilizes Koopman operator theory to update an estimated model of the underlying dynamics at each time step in real-time. The learned and continuously updated models are then embedded into an online Model Predictive Control (MPC) structure and deployed onto soft multi-fingered robotic grippers. To evaluate the performance, the prediction accuracy of our approach is first compared against other model-extraction methods among different datasets. Next, the online modeling and control algorithm is tested experimentally with a soft 3-fingered gripper grasping objects of various shapes and weights unknown to the controller initially. Results indicate a high success ratio in grasping different objects using the proposed method. Sample trials can be viewed at https://youtu.be/i2hCMX7zSKQ.