论文标题
TICO:自我监督的视觉表示学习的转换不变性和协方差对比
TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning
论文作者
论文摘要
我们提出了用于自我监督的视觉表示学习的变换不变性和协方差对比度(TICO)。与其他最新的自我监督学习方法相似,我们的方法基于同一图像的不同扭曲版本之间的嵌入之间的一致性,这推动了编码器产生转换不变表示。为了避免编码器生成恒定向量的微不足道解,我们通过惩罚低级解决方案来使来自不同图像的嵌入的协方差矩阵正常。通过共同最大程度地减少变换不变性损失和协方差对比损失,我们得到了一个能够为下游任务产生有用表示的编码器。我们分析我们的方法,并表明它可以被视为MOCO的变体,其中具有无限尺寸的隐式内存库,而无需额外的内存成本。这使我们的方法在使用小批量尺寸时的性能要比替代方法更好。 TICO也可以看作是Barlow双胞胎的修改。通过将对比度和冗余方法联系起来,TICO为我们提供了有关关节嵌入方法如何工作的新见解。
We present Transformation Invariance and Covariance Contrast (TiCo) for self-supervised visual representation learning. Similar to other recent self-supervised learning methods, our method is based on maximizing the agreement among embeddings of different distorted versions of the same image, which pushes the encoder to produce transformation invariant representations. To avoid the trivial solution where the encoder generates constant vectors, we regularize the covariance matrix of the embeddings from different images by penalizing low rank solutions. By jointly minimizing the transformation invariance loss and covariance contrast loss, we get an encoder that is able to produce useful representations for downstream tasks. We analyze our method and show that it can be viewed as a variant of MoCo with an implicit memory bank of unlimited size at no extra memory cost. This makes our method perform better than alternative methods when using small batch sizes. TiCo can also be seen as a modification of Barlow Twins. By connecting the contrastive and redundancy-reduction methods together, TiCo gives us new insights into how joint embedding methods work.