论文标题

天然后门数据集

Natural Backdoor Datasets

论文作者

Wenger, Emily, Bhattacharjee, Roma, Bhagoji, Arjun Nitin, Passananti, Josephine, Andere, Emilio, Zheng, Haitao, Zhao, Ben Y.

论文摘要

有关后门毒物攻击的广泛文献研究了使用“数字触发模式”的后门攻击和防御措施。相比之下,“物理后门”使用物理对象作为触发器,直到最近才被确定,并且在质量上有足够的不同,以抵抗针对数字触发后门的所有防御。对物理后门的研究受到限制,因为它访问了包含与分类目标共同位置的物理对象的真实图像的大型数据集。构建这些数据集是时间和劳动力密集的。这项工作旨在应对有关物理后门攻击研究的可及性的挑战。我们假设在流行数据集(例如ImageNet)中可能存在天然存在的物理共同确定的对象。一旦确定,这些数据的仔细重新标记可以将它们转化为训练样本,以进行物理后门攻击。我们提出了一种方法,可以通过现有数据集中的潜在触发器的这些潜在触发器的这些子集以及它们可以毒化的特定类别。我们称这些天然存在的触发级子集自然后门数据集。我们的技术成功地识别了广泛可用的数据集中的自然后门,并在行为上等同于在手动策划数据集中训练的模型。我们发布我们的代码,以使研究社区可以创建自己的数据集,以研究物理后门攻击。

Extensive literature on backdoor poison attacks has studied attacks and defenses for backdoors using "digital trigger patterns." In contrast, "physical backdoors" use physical objects as triggers, have only recently been identified, and are qualitatively different enough to resist all defenses targeting digital trigger backdoors. Research on physical backdoors is limited by access to large datasets containing real images of physical objects co-located with targets of classification. Building these datasets is time- and labor-intensive. This works seeks to address the challenge of accessibility for research on physical backdoor attacks. We hypothesize that there may be naturally occurring physically co-located objects already present in popular datasets such as ImageNet. Once identified, a careful relabeling of these data can transform them into training samples for physical backdoor attacks. We propose a method to scalably identify these subsets of potential triggers in existing datasets, along with the specific classes they can poison. We call these naturally occurring trigger-class subsets natural backdoor datasets. Our techniques successfully identify natural backdoors in widely-available datasets, and produce models behaviorally equivalent to those trained on manually curated datasets. We release our code to allow the research community to create their own datasets for research on physical backdoor attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源