论文标题

对数加权$ n $ -laplacian问题的鼻结解决方案与指数非线性问题

Nodal solutions for Logarithmic weighted $N$-Laplacian problem with exponential nonlinearities

论文作者

Dridi, Brahim, Jaidane, Rached

论文摘要

在本文中,我们研究以下问题$$ - {\ rm div}(ω(x)| \ nabla u |^{n-2} \ nabla u)=λf(x,x,x,u)\ quad \ mbox {in} $ \ mathbb {r^{n}} $,$ n \ geq2 $和$ w(x)$一个对数类型的单数重量。反应来源$ f(x,u)$是$ x $的径向功能,相对于指数类型的最大增长是亚临界或关键的。通过使用Nehari集合中的约束最小化以及定量变形引理和程度理论,我们证明了淋巴结溶液的存在。

In this article, we study the following problem $$-{\rm div} (ω(x)|\nabla u|^{N-2} \nabla u) = λ f(x,u) \quad\mbox{ in }\quad B, \quad u=0 \quad\mbox{ on } \quad\partial B,$$ where $B$ is the unit ball of $\mathbb{R^{N}}$, $N\geq2$ and $ w(x)$ a singular weight of logarithm type. The reaction source $f(x,u)$ is a radial function with respect to $x$ and is subcritical or critical with respect to a maximal growth of exponential type. By using the constrained minimization in Nehari set coupled with the quantitative deformation lemma and degree theory, we prove the existence of nodal solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源