论文标题
在非交通空间中各向异性谐波振荡器的相空间分布中的纠缠
Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space
论文作者
论文摘要
借助Simon的可分离性条件(普遍的Peres-Horodecki标准),研究了与非共同空间中各向异性谐波振荡器相对应的双方高斯状态。事实证明,为了在非交通坐标之间表现出纠缠,参数(质量和频率)必须满足唯一的约束方程。对角度化模型后,可获得系统的精确溶液,并保持固有的互合结构完整。结果表明,通过研究相位空间中的wigner准生效分布,可以识别纠缠的自由度。我们已经表明,坐标仅与与其他坐标相对应的偶联动量纠缠。
The bi-partite Gaussian state, corresponding to an anisotropic harmonic oscillator in a noncommutative-space, is investigated with the help of the Simon's separability condition (generalized Peres-Horodecki criterion). It turns out that, in order to exhibit the entanglement between the noncommutative co-ordinates, the parameters (mass and frequency) have to satisfy an unique constraint equation. Exact solutions for the system are obtained after diagonalizing the model, keeping the intrinsic symplectic structure intact. It is shown that, the identification of the entangled degrees of freedom is possible by studying the Wigner quasiprobability distribution in phase-space. We have shown that the co-ordinates are entangled only with the conjugate momentum corresponding to other co-ordinates.