论文标题
关于通用的WKB扩展单片生成函数
On Generalized WKB Expansion of Monodromy Generating Function
论文作者
论文摘要
我们研究了schrödinger方程的单形图在riemann表面上具有二阶杆子的meromormormormormormormorphic潜力。首先,我们讨论了基本投影连接的条件,该连接引起了自己的一组Darboux同源坐标,以暗示角色品种上的高盛泊松结构。使用此结果,我们扩展了纸张[理论。和数学。物理。 206(2021),258-295,Arxiv:1910.07140],通过对单毛术互置术的生成函数(Yang-Yang函数)进行广泛的WKB扩展并计算其前三个术语。
We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258-295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang-Yang function) and computing its first three terms.