论文标题
弱近似在布利特表面
Weak approximation on Châtelet surfaces
论文作者
论文摘要
当所有奇异纤维在合理点上定义时,我们研究了在数字场上的弱近似值。我们认为在地面的每个有限延伸范围内满足弱近似值的水解表面。我们通过表明brauer-manin障碍物消失,然后应用Colliot-Thélène,Sansuc和Swinnerton-Dyer的结果来证明许多结果。
We study weak approximation for Châtelet surfaces over number fields when all singular fibers are defined over rational points. We consider Châtelet surfaces which satisfy weak approximation over every finite extension of the ground field. We prove many of these results by showing that the Brauer-Manin obstruction vanishes, then apply results of Colliot-Thélène, Sansuc, and Swinnerton-Dyer.