论文标题

同构,Smale和Weinberger的同型学习的紧密界限,用于欧几里得空间的子集

Tight bounds for the learning of homotopy à la Niyogi, Smale, and Weinberger for subsets of Euclidean spaces and of Riemannian manifolds

论文作者

Attali, Dominique, Kouřimská, Hana Dal Poz, Fillmore, Christopher, Ghosh, Ishika, Lieutier, André, Stephenson, Elizabeth, Wintraecken, Mathijs

论文摘要

在本文中,我们从基础空间的样本中扩展并加强了Niyogi,Smale和Weinberger的开创性工作。在他们的工作中,Niyogi,Smale和Weinberger研究了$ C^2 $歧管的样品,并嵌入了$ \ Mathbb {r}^d $中。我们通过以下方式扩展了他们的结果:在本文的第一部分中,我们考虑了两个正面覆盖范围的歧管 - 比$ c^2 $歧管更通用的环境 - 以及嵌入在$ \ mathbb {r}^d $中的积极覆盖范围。此类$ \ Mathcal {s} $的样本$ p $不必直接躺在它上。取而代之的是,我们假设两个单方面的Hausdorff距离 - $ \ varepsilon $和$δ$ - $ p $和$ \ \ \ \ \ \ mathcal {s} $之间是有界的。我们以$ \ varepsilon $和$δ$表示明确的界限,以确保存在一个参数$ r $,以便以样本$ p $ p $变形 - ret racts to $ \ nathcal {s} $中心的半径$ r $ r $的结合。 在论文的第二部分中,我们在更一般的环境中研究同拷贝学习 - 我们研究了嵌入在\ emph {riemannian歧管中的正覆盖范围的阳性覆盖率和submanifolds,具有有界的截面曲率}。为此,我们在Riemannian环境中介绍了一个新版本的覆盖范围,该版本受剪切基因座的启发。再一次,我们在$ \ varepsilon $和两个案例(子手机和正面覆盖范围的集合)上提供紧密的界限,并通过明确的结构表现出紧密度。

In this article we extend and strengthen the seminal work by Niyogi, Smale, and Weinberger on the learning of the homotopy type from a sample of an underlying space. In their work, Niyogi, Smale, and Weinberger studied samples of $C^2$ manifolds with positive reach embedded in $\mathbb{R}^d$. We extend their results in the following ways: In the first part of our paper we consider both manifolds of positive reach -- a more general setting than $C^2$ manifolds -- and sets of positive reach embedded in $\mathbb{R}^d$. The sample $P$ of such a set $\mathcal{S}$ does not have to lie directly on it. Instead, we assume that the two one-sided Hausdorff distances -- $\varepsilon$ and $δ$ -- between $P$ and $\mathcal{S}$ are bounded. We provide explicit bounds in terms of $\varepsilon$ and $ δ$, that guarantee that there exists a parameter $r$ such that the union of balls of radius $r$ centred at the sample $P$ deformation-retracts to $\mathcal{S}$. In the second part of our paper we study homotopy learning in a significantly more general setting -- we investigate sets of positive reach and submanifolds of positive reach embedded in a \emph{Riemannian manifold with bounded sectional curvature}. To this end we introduce a new version of the reach in the Riemannian setting inspired by the cut locus. Yet again, we provide tight bounds on $\varepsilon$ and $δ$ for both cases (submanifolds as well as sets of positive reach), exhibiting the tightness by an explicit construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源