论文标题
分子云中最简单的酰胺的形成:formamide(NH $ _ {2} $ CHO)及其在h $ _2 $ o-o-rich and Co Co Co rich Interlar Ice类似物中的衍生物及其衍生物。
Formation of the simplest amide in molecular clouds: formamide (NH$_{2}$CHO) and its derivatives in H$_2$O-rich and CO-rich interstellar ice analogs upon VUV irradiation
论文作者
论文摘要
甲酰胺(NH $ _2 $ CHO)对各种恒星形成区域以及彗星材料中的天文学检测意味着,最简单的酰胺可能在低温下的深色分子云中具有早期起源。实验室研究已证明了星际公司的有效NH $ _2 $ CHO组:NH $ _3 $冰类似物在充满活力的过程中。但是,它仍在争论中,在丰富的h $ _2 $ o环境中,提出的自由基 - 自由基重组反应是否仍然有效。这项工作的目的是调查在分子云中占据盛行的条件下,在H $ _2 $ o- O-和共同富集的ICE中的NH $ _2 $ CHO的形成。因此,由H $ _2 $ O:CO:CO:NH $ _3 $(10:5:1),CO:NH $ _3 $(4:1)和CO:NH $:NH $ _3 $(0.6:1)组成的不同的冰混合物被暴露于10k。新形成的物种是光子通量的函数。红外光谱鉴定是通过温度填充实验与四极杆质谱仪结合的。 CO:NH $ _3 $冰混合物的能量处理主要导致NH $ _2 $ CHO形成,以及其化学衍生物(例如异氰酸(HNCO))和氰酸酯离子(OCN $^ - $)。 NH $ _2 $ CHO的形成动力学表明对冰的比率和成分有明确的依赖性;最高收益率是在H $ _2 $ rich冰中发现的。讨论了结果反应网络的天文相关性。
The astronomical detection of formamide (NH$_2$CHO) toward various star-forming regions and in cometary material implies that the simplest amide might have an early origin in dark molecular clouds at low temperatures. Laboratory studies have proven the efficient NH$_2$CHO formation in interstellar CO:NH$_3$ ice analogs upon energetic processing. However, it is still under debate, whether the proposed radical-radical recombination reactions forming complex organic molecules remain valid in an abundant H$_2$O environment. The aim of this work was to investigate the formation of NH$_2$CHO in H$_2$O- and CO-rich ices under conditions prevailing in molecular clouds. Therefore, different ice mixtures composed of H$_2$O:CO:NH$_3$ (10:5:1), CO:NH$_3$ (4:1), and CO:NH$_3$ (0.6:1) were exposed to vacuum ultraviolet photons in an ultra-high vacuum chamber at 10 K. Fourier-transform infrared spectroscopy was utilized to monitor in situ the initial and newly formed species as a function of photon fluence. The infrared spectral identifications are complementarily secured by a temperature-programmed desorption experiment combined with a quadrupole mass spectrometer. The energetic processing of CO:NH$_3$ ice mixtures mainly leads to the NH$_2$CHO formation, along with its chemical derivatives such as isocyanic acid (HNCO) and cyanate ion (OCN$^-$). The formation kinetics of NH$_2$CHO shows an explicit dependency on ice ratios and compositions; the highest yield is found in H$_2$O-rich ice. The astronomical relevance of the resulting reaction network is discussed.