论文标题
量子计算量子蒙特卡洛
Quantum Computing Quantum Monte Carlo
论文作者
论文摘要
量子计算和量子蒙特卡洛(QMC)分别是用于理解多体量子系统的最新量子和经典计算方法。在这里,我们提出了一种混合量子古典算法,该算法整合了这两种方法,在有效的表示和操纵量子状态并克服其局限性方面将其独特的特征继承在有效的表示中。我们首先引入非隔音指标(NSIS)及其上限,这些指标及其上限,这些指标衡量了符号问题,这是QMC的最显着限制。我们表明,我们的算法可以大大减轻符号问题,从而在量子计算的帮助下降低了NSIS。同时,量子蒙特卡洛的使用也提高了浅量子电路的表达性,从而允许更准确的计算,而通常在更深的电路中可以实现的计算才能实现。我们在数值上测试并验证N $ _2 $分子(12 QUBITS)和HUBBARD模型(16 QUBITS)的方法。我们的工作铺平了解决中等规模和早期耐受耐受量子计算机的实践问题的方法,并在化学,凝结物理学,材料,高能量物理学等方面使用了潜在的应用。
Quantum computing and quantum Monte Carlo (QMC) are respectively the state-of-the-art quantum and classical computing methods for understanding many-body quantum systems. Here, we propose a hybrid quantum-classical algorithm that integrates these two methods, inheriting their distinct features in efficient representation and manipulation of quantum states and overcoming their limitations. We first introduce non-stoquasticity indicators (NSIs) and their upper bounds, which measure the sign problem, the most notable limitation of QMC. We show that our algorithm could greatly mitigate the sign problem, which decreases NSIs with the assistance of quantum computing. Meanwhile, the use of quantum Monte Carlo also increases the expressivity of shallow quantum circuits, allowing more accurate computation that is conventionally achievable only with much deeper circuits. We numerically test and verify the method for the N$_2$ molecule (12 qubits) and the Hubbard model (16 qubits). Our work paves the way to solving practical problems with intermediate-scale and early-fault tolerant quantum computers, with potential applications in chemistry, condensed matter physics, materials, high energy physics, etc.