论文标题
定期的过椭圆曲线模型
Regular models of hyperelliptic curves
论文作者
论文摘要
让$ k $是一个完全离散值的残留特性领域,而不是$ 2 $和$ o_k $它的整数环。我们在$ o_k $上明确构建常规型号,其严格的正常横梁$ c/k:y^2 = f(x)$。为此,我们介绍了“ Maclane群集图片”的新概念,该概念旨在成为集群和MacLane估值之间的联系。
Let $K$ be a complete discretely valued field of residue characteristic not $2$ and $O_K$ its ring of integers. We explicitly construct a regular model over $O_K$ with strict normal crossings of any hyperelliptic curve $C/K:y^2=f(x)$. For this purpose, we introduce the new notion of ''MacLane cluster picture'', that aims to be a link between clusters and MacLane valuations.