论文标题
近似肩variance(3)一头卷积
Approximate Equivariance SO(3) Needlet Convolution
论文作者
论文摘要
本文为旋转组开发了旋转的旋转一面卷积,因此(3)可以提炼球形信号的多尺度信息。球形的阵头变换从$ \ mathbb {s}^2 $推广到SO(3)组,该组将球形信号分解为一组紧密的Framelet操作员,将球形信号分解为近似和详细的光谱系数。分解和重建过程中的球形信号实现了旋转不变性。基于阵型变换,我们形成了一个带有多个SO(3)一面卷积层的NEDLET近似肩varianciance球形CNN(NES)。该网络建立了一个强大的工具,可以提取球形信号的几何不变特征。该模型允许具有多分辨率表示的足够网络可伸缩性。通过小波收缩激活函数学习了强大的信号嵌入,该函数会过滤冗余高通表示,同时保持近似的旋转不变性。 NES实现了量子化学回归和宇宙微波背景(CMB)的最新性能,它删除了重建,该重建具有很大的潜力,可以通过高分辨率和多规模的球形信号表示来解决科学挑战。
This paper develops a rotation-invariant needlet convolution for rotation group SO(3) to distill multiscale information of spherical signals. The spherical needlet transform is generalized from $\mathbb{S}^2$ onto the SO(3) group, which decomposes a spherical signal to approximate and detailed spectral coefficients by a set of tight framelet operators. The spherical signal during the decomposition and reconstruction achieves rotation invariance. Based on needlet transforms, we form a Needlet approximate Equivariance Spherical CNN (NES) with multiple SO(3) needlet convolutional layers. The network establishes a powerful tool to extract geometric-invariant features of spherical signals. The model allows sufficient network scalability with multi-resolution representation. A robust signal embedding is learned with wavelet shrinkage activation function, which filters out redundant high-pass representation while maintaining approximate rotation invariance. The NES achieves state-of-the-art performance for quantum chemistry regression and Cosmic Microwave Background (CMB) delensing reconstruction, which shows great potential for solving scientific challenges with high-resolution and multi-scale spherical signal representation.