论文标题

机器学习规定的画布以优化业务成果

Machine Learning Prescriptive Canvas for Optimizing Business Outcomes

论文作者

Shteingart, Hanan, Oostra, Gerben, Levinkron, Ohad, Parush, Naama, Shabat, Gil, Aronovich, Daniel

论文摘要

数据科学有可能改善各种垂直领域的业务。尽管狮子的数据科学项目使用了一种预测方法,但这些预测应成为决策。但是,这种两步的方法不仅是最佳的,而且甚至可能降低性能并使项目失败。另一种选择是遵循规范性的框架,在该框架中,行动是“第一公民”,以便该模型制定一项规定采取行动的政策,而不是预测结果。在本文中,我们解释了为什么规定的方法很重要,并提供了逐步的方法论:规定的画布。后者旨在改善项目利益相关者的框架和沟通,包括项目和数据科学经理,以成功地产生业务影响。

Data science has the potential to improve business in a variety of verticals. While the lion's share of data science projects uses a predictive approach, to drive improvements these predictions should become decisions. However, such a two-step approach is not only sub-optimal but might even degrade performance and fail the project. The alternative is to follow a prescriptive framing, where actions are "first citizens" so that the model produces a policy that prescribes an action to take, rather than predicting an outcome. In this paper, we explain why the prescriptive approach is important and provide a step-by-step methodology: the Prescriptive Canvas. The latter aims to improve framing and communication across the project stakeholders including project and data science managers towards a successful business impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源