论文标题

主动推断机器人操纵

Active Inference for Robotic Manipulation

论文作者

Schneider, Tim, Belousov, Boris, Abdulsamad, Hany, Peters, Jan

论文摘要

机器人的操纵是一个未解决的问题,尽管在过去的几十年中机器人技术和机器学习取得了重大进展,但仍是一个未解决的问题。操纵的主要挑战之一是部分可观察性,因为代理通常不知道环境的所有物理特性及其事先操纵的对象。一种以明确方式处理部分可观察性的最近出现的理论是主动推断。它通过驱动代理商以不仅是目标指导的方式,而且对环境有益的方式采取行动来做到这一点。在这项工作中,我们将主动推断应用于难以探索的模拟机器人操纵任务,在该任务中,代理必须将球平衡到目标区域。由于这项任务的奖励是稀疏的,因此为了探索这种环境,代理必须学会在没有任何外部反馈的情况下平衡球,这纯粹是由其自己的好奇心驱动的。我们表明,主动推论引起的信息寻求行为使代理可以系统地探索这些具有挑战性的稀疏环境。最后,我们得出的结论是,使用信息寻求目标在稀疏环境中是有益的,并允许代理解决未表现出有针对性探索失败的方法的任务。

Robotic manipulation stands as a largely unsolved problem despite significant advances in robotics and machine learning in the last decades. One of the central challenges of manipulation is partial observability, as the agent usually does not know all physical properties of the environment and the objects it is manipulating in advance. A recently emerging theory that deals with partial observability in an explicit manner is Active Inference. It does so by driving the agent to act in a way that is not only goal-directed but also informative about the environment. In this work, we apply Active Inference to a hard-to-explore simulated robotic manipulation tasks, in which the agent has to balance a ball into a target zone. Since the reward of this task is sparse, in order to explore this environment, the agent has to learn to balance the ball without any extrinsic feedback, purely driven by its own curiosity. We show that the information-seeking behavior induced by Active Inference allows the agent to explore these challenging, sparse environments systematically. Finally, we conclude that using an information-seeking objective is beneficial in sparse environments and allows the agent to solve tasks in which methods that do not exhibit directed exploration fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源