论文标题

时间周期性的双连接溶液的3D准晶状体模型

Time periodic doubly connected solutions for the 3D quasi-geostrophic model

论文作者

García, C., Hmidi, T., Mateu, J.

论文摘要

在本文中,我们在斑块设置中为3D准地球模型构建了时间周期性连接的解决方案。更具体地说,我们证明存在非平凡$ m $折叠的双重连接的旋转贴片,该旋转贴片是从通用双重连接的革命形状域,具有较高对称性$ m \ geq m_0 $和$ m_0 $的大小足够大。平衡状态下的线性矩阵算子具有可变和奇异系数,其光谱分析是通过在[27]中设计的方法进行的,其中已引入合适的对称性。由于表面之间的相互作用使光谱问题变得更丰富且参与其中,因此出现了新的困难。

In this paper, we construct time periodic doubly connected solutions for the 3D quasi-geostrophic model in the patch setting. More specifically, we prove the existence of nontrivial $m$-fold doubly connected rotating patches bifurcating from a generic doubly connected revolution shape domain with higher symmetry $m\geq m_0$ and $m_0$ is large enough. The linearized matrix operator at the equilibrium state is with variable and singular coefficients and its spectral analysis is performed via the approach devised in [27] where a suitable symmetrization has been introduced. New difficulties emerge due to the interaction between the surfaces making the spectral problem richer and involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源