论文标题
弱重力透镜剪切分析中的光度红移不确定性:模型和边缘化
Photometric Redshift Uncertainties in Weak Gravitational Lensing Shear Analysis: Models and Marginalization
论文作者
论文摘要
在弱透镜剪切分析中恢复可信的宇宙学参数约束需要一个准确的模型,该模型可以用来在描述系统不确定性的潜在源头的滋扰参数上边缘化,例如样品红移分布分布$ n(z)$的不确定性。由于在高维参数空间中运行Markov Chain Monte-Carlo(MCMC)的挑战,其中$ n(z)$不确定性可能被参数化,因此通常可以简化$ n(z)$参数化或组合MCMC链的$ n(z)$ n(z)$ n(z)$从$ n(z)中repempled。在这项工作中,我们提出了一种统计原理的贝叶斯重采样方法,用于使用多个MCMC链条上$ n(z)$不确定性边缘化。我们在预测的HSC三年形状目录的预测宇宙剪切分析的背景下将新方法与现有方法进行比较,并发现这些方法恢复了相似的宇宙学参数约束,这意味着使用最有效的方法是适当的。但是,我们发现,对于具有完整HSC调查数据集的约束功能的数据集(并且,即将进行的那些即将进行的调查,甚至更严格的限制),从$ n(z)$不确定性上进行边缘化方法的选择中的几种方法中的几种方法中的文献中的几种方法都可以显着影响统计不确定性,以确保对cosological cameters的统计不认真的选择,并且可以予以选择。
Recovering credible cosmological parameter constraints in a weak lensing shear analysis requires an accurate model that can be used to marginalize over nuisance parameters describing potential sources of systematic uncertainty, such as the uncertainties on the sample redshift distribution $n(z)$. Due to the challenge of running Markov Chain Monte-Carlo (MCMC) in the high dimensional parameter spaces in which the $n(z)$ uncertainties may be parameterized, it is common practice to simplify the $n(z)$ parameterization or combine MCMC chains that each have a fixed $n(z)$ resampled from the $n(z)$ uncertainties. In this work, we propose a statistically-principled Bayesian resampling approach for marginalizing over the $n(z)$ uncertainty using multiple MCMC chains. We self-consistently compare the new method to existing ones from the literature in the context of a forecasted cosmic shear analysis for the HSC three-year shape catalog, and find that these methods recover similar cosmological parameter constraints, implying that using the most computationally efficient of the approaches is appropriate. However, we find that for datasets with the constraining power of the full HSC survey dataset (and, by implication, those upcoming surveys with even tighter constraints), the choice of method for marginalizing over $n(z)$ uncertainty among the several methods from the literature may significantly impact the statistical uncertainties on cosmological parameters, and a careful model selection is needed to ensure credible parameter intervals.