论文标题

通过带注释的信息来查看基于IGC学习框架的图像转换的神经网络

Review Neural Networks about Image Transformation Based on IGC Learning Framework with Annotated Information

论文作者

Yan, Yuanjie, Yang, Suorong, Wang, Yan, Zhao, Jian, Shen, Furao

论文摘要

图像转换是一类视觉和图形问题,其目标是学习输入图像和输出图像之间的映射,在深神经网络的背景下迅速发展。在计算机视觉(CV)中,许多问题可以视为图像转换任务,例如语义分段和样式传输。这些作品具有不同的主题和动机,使图像转换任务蓬勃发展。一些调查仅回顾有关样式转移或图像到图像翻译的研究,所有这些都只是图像转换的一个分支。但是,据我们所知,没有一项调查总结在统一框架中共同起作用。本文提出了一个新颖的学习框架,包括独立学习,指导学习和合作学习,称为IGC学习框架。我们讨论的图像转换主要涉及有关深神经网络的一般图像到图像转换和样式转移。从这个框架的角度来看,我们回顾了这些子任务,并对各种情况进行了统一的解释。我们根据相似的开发趋势对图像转换的相关子任务进行分类。此外,已经进行了实验以验证IGC学习的有效性。最后,讨论了新的研究方向和开放问题,以供将来的研究。

Image transformation, a class of vision and graphics problems whose goal is to learn the mapping between an input image and an output image, develops rapidly in the context of deep neural networks. In Computer Vision (CV), many problems can be regarded as the image transformation task, e.g., semantic segmentation and style transfer. These works have different topics and motivations, making the image transformation task flourishing. Some surveys only review the research on style transfer or image-to-image translation, all of which are just a branch of image transformation. However, none of the surveys summarize those works together in a unified framework to our best knowledge. This paper proposes a novel learning framework including Independent learning, Guided learning, and Cooperative learning, called the IGC learning framework. The image transformation we discuss mainly involves the general image-to-image translation and style transfer about deep neural networks. From the perspective of this framework, we review those subtasks and give a unified interpretation of various scenarios. We categorize related subtasks about the image transformation according to similar development trends. Furthermore, experiments have been performed to verify the effectiveness of IGC learning. Finally, new research directions and open problems are discussed for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源