论文标题
基于分子理论的两张量流体动力学的严格双轴极限
Rigorous biaxial limit of a molecular-theory-based two-tensor hydrodynamics
论文作者
论文摘要
我们考虑从分子模型中得出的两张量流体动力学,其中高阶张量是通过通过最大熵状态或准肠道的闭合近似来确定的。我们证明了局部时间平滑解决方案对两张量系统的存在和唯一性。然后,我们严格地证明基于分子理论的两张量流体动力学与双轴框架流体动力学之间的联系是合理的。更具体地说,在希尔伯特(Hilbert)扩展的框架中,我们显示了解决方案与两张态水动力学对框架流体动力学溶液的收敛性。
We consider a two-tensor hydrodynamics derived from the molecular model, where high-order tensors are determined by closure approximation through the maximum entropy state or the quasi-entropy. We prove the existence and uniqueness of local in time smooth solutions to the two-tensor system. Then, we rigorously justify the connection between the molecular-theory-based two-tensor hydrodynamics and the biaxial frame hydrodynamics. More specifically, in the framework of Hilbert expansion, we show the convergence of the solution to the two-tensor hydrodynamics to the solution to the frame hydrodynamics.