论文标题
log-hyperConvexity索引和伯格曼内核
Log-hyperconvexity index and Bergman kernel
论文作者
论文摘要
当$ω\ subset \ mathbb {c}^n $是一个有限制的域时,我们获得了伯格曼距离的量化估计值a)^q $ - 伯格曼内核$k_Ω(\ cdot,w)$当$α_l(ω)> 0 $时。
We obtain a quantitative estimate of Bergman distance when $Ω\subset \mathbb{C}^n$ is a bounded domain with log-hyperconvexity index $α_l(Ω)>\frac{n-1+\sqrt{(n-1)(n+3)}}{2}$, as well as the $A^2(\log A)^q$-integrability of the Bergman kernel $K_Ω(\cdot, w)$ when $α_l(Ω)>0$.