论文标题
从BEV重建:基于几何结构的3D车道检测方法
Reconstruct from BEV: A 3D Lane Detection Approach based on Geometry Structure Prior
论文作者
论文摘要
在本文中,我们提出了一种先进的方法,用于针对单眼3D车道检测的问题,通过在2D至3D车道重建过程下利用几何结构。受到先前方法的启发,我们首先分析了3D车道与其2D表示之间的几何启发式,并建议根据先验结构进行明确的监督,这使得它可以实现在车间和车内的关系中,以促进从本地到全球的3D车道的重建。其次,为了减少2D车道表示中的结构损失,我们直接从前视图图像中提取BEV车道信息,从而极大地缓解了以前方法中遥远的车道特征的混淆。此外,我们通过在管道中综合新的训练数据来分割和重建任务,以应对相机姿势和地面坡度的不平衡数据分布以改善对看不见数据的概括,以应对我们的分割和重建任务,以对抗分割和重建任务,从而提出一种新颖的任务数据增强方法。我们的工作标志着首次尝试使用几何信息到基于DNN的3D车道检测中的尝试,并使其可用于在超长距离内检测车道,从而使原始检测范围增加一倍。提出的方法可以由其他框架平稳地采用,而无需额外的成本。实验结果表明,我们的工作在无需额外参数的情况下,以82 fps的实时速度以82 fps的实时速度在Apollo 3D合成数据集上优于最先进的方法。
In this paper, we propose an advanced approach in targeting the problem of monocular 3D lane detection by leveraging geometry structure underneath the process of 2D to 3D lane reconstruction. Inspired by previous methods, we first analyze the geometry heuristic between the 3D lane and its 2D representation on the ground and propose to impose explicit supervision based on the structure prior, which makes it achievable to build inter-lane and intra-lane relationships to facilitate the reconstruction of 3D lanes from local to global. Second, to reduce the structure loss in 2D lane representation, we directly extract BEV lane information from front view images, which tremendously eases the confusion of distant lane features in previous methods. Furthermore, we propose a novel task-specific data augmentation method by synthesizing new training data for both segmentation and reconstruction tasks in our pipeline, to counter the imbalanced data distribution of camera pose and ground slope to improve generalization on unseen data. Our work marks the first attempt to employ the geometry prior information into DNN-based 3D lane detection and makes it achievable for detecting lanes in an extra-long distance, doubling the original detection range. The proposed method can be smoothly adopted by other frameworks without extra costs. Experimental results show that our work outperforms state-of-the-art approaches by 3.8% F-Score on Apollo 3D synthetic dataset at real-time speed of 82 FPS without introducing extra parameters.