论文标题

通过距离指标对交互网络进行建模

Modelling Populations of Interaction Networks via Distance Metrics

论文作者

Bolt, George, Lunagómez, Simón, Nemeth, Christopher

论文摘要

网络数据是通过观察实体集合之间的关系信息而产生的。当(i)观察网络样本,神经科学中的Connectome数据是一个无处不在的例子,以及(ii)网络中的观察单位是边缘或路径,例如人们之间的电子邮件或一系列网站访问网站,通常将网络观察单位(通常称为交互网络数据)时,文献中的最新工作已独立考虑。但是,这两种情况的交集尚未考虑。在本文中,我们提出了一个新的贝叶斯建模框架来分析此类数据。考虑到观测值之间的实践者指定的距离度量,我们通过位置和比例参数定义模型家族,类似于高斯分布,随后推断模型参数为这种非标准数据结构提供了合理的统计摘要。为了促进推理,我们提出了专门的马尔可夫链蒙特卡洛(MCMC)方案,能够在离散和多维参数空间上从可折叠后分布进行采样。通过仿真研究,我们确认了我们的方法和推理方案的功效,同时我们通过基于位置的社交网络(LSBN)数据集进行了示例分析说明。

Network data arises through observation of relational information between a collection of entities. Recent work in the literature has independently considered when (i) one observes a sample of networks, connectome data in neuroscience being a ubiquitous example, and (ii) the units of observation within a network are edges or paths, such as emails between people or a series of page visits to a website by a user, often referred to as interaction network data. The intersection of these two cases, however, is yet to be considered. In this paper, we propose a new Bayesian modelling framework to analyse such data. Given a practitioner-specified distance metric between observations, we define families of models through location and scale parameters, akin to a Gaussian distribution, with subsequent inference of model parameters providing reasoned statistical summaries for this non-standard data structure. To facilitate inference, we propose specialised Markov chain Monte Carlo (MCMC) schemes capable of sampling from doubly-intractable posterior distributions over discrete and multi-dimensional parameter spaces. Through simulation studies we confirm the efficacy of our methodology and inference scheme, whilst its application we illustrate via an example analysis of a location-based social network (LSBN) data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源