论文标题
使用KAN扩展扩展资源单调
Extending Resource Monotones using Kan Extensions
论文作者
论文摘要
在本文中,我们概括了Gour和Tomamichel提出的有关资源理论单调扩展的框架。资源理论的单调分配了该理论中的每个资源的实际数字,表示效用或资源的价值。当资源理论完全忠实地融入更大的理论中时,Gour和Tomamichel研究了使用集合理论框架扩展单调的问题。当存在一种资源理论的功能转换为另一种资源理论而不仅仅是一个充分而忠实的包容性时,可以将计算单调扩展的问题概括为方案。在本文中,我们表明(从点)KAN扩展提供了一个精确的分类框架来描述和计算单调的这种扩展。为了使用KAN扩展设置单调扩展,我们将分区类别(PCAT)作为资源理论和PCAT函数的框架,以形式化资源理论之间的关系。我们将单调元素描述为PCAT函子的非负实数的预订,并描述使用KAN扩展沿任何PCAT函子扩展单调的。我们通过将框架应用于将两分纯状态的纠缠单调扩展到两分的混合状态,将经典差异扩展到量子设置,并扩展从经典概率理论到量子理论的不均匀性单调来展示我们的框架如何运作。
In this paper we generalize the framework proposed by Gour and Tomamichel regarding extensions of monotones for resource theories. A monotone for a resource theory assigns a real number to each resource in the theory signifying the utility or the value of the resource. Gour and Tomamichel studied the problem of extending monotones using set-theoretical framework when a resource theory embeds fully and faithfully into the larger theory. One can generalize the problem of computing monotone extensions to scenarios when there exists a functorial transformation of one resource theory to another instead of just a full and faithful inclusion. In this article, we show that (point-wise) Kan extensions provide a precise categorical framework to describe and compute such extensions of monotones. To set up monotone extensions using Kan extensions, we introduce partitioned categories (pCat)as a framework for resource theories and pCat functors to formalize relationship between resource theories. We describe monotones as pCat functors into the preorder of non-negative real numbers, and describe extending monotones along any pCat functor using Kan extensions. We show how our framework works by applying it to extend entanglement monotones for bipartite pure states to bipartite mixed states, to extend classical divergences to the quantum setting, and to extend a non-uniformity monotone from classical probabilistic theory to quantum theory.