论文标题

NLP中的第一方偏见:迈向研究歧管的多维探索

Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold

论文作者

Ruder, Sebastian, Vulić, Ivan, Søgaard, Anders

论文摘要

典型的NLP实验训练了标记为英语数据的标准体系结构,并优化了准确性,而无需考虑其他维度,例如公平,可解释性或计算效率。我们通过最近对NLP研究论文的手动分类表明,确实是这种情况,并将其称为正方形的实验设置。我们观察到,NLP研究通常超越了一个平方的设置,例如,不仅关注准确性,而且关注公平或解释性,而且通常仅沿单个维度。例如,针对多语言性的大多数工作仅考虑准确性;大多数关于公平或解释性的工作仅考虑英语;等等。我们通过对最近的NLP研究论文和ACL测试奖励获得者的手册分类来展示此信息。大多数研究的这种一维意味着我们只探索NLP研究搜索空间的一部分。我们提供了一个历史和最新的例子,说明了一个偏见如何导致研究人员得出错误的结论或做出不明智的选择,指出了在研究歧管上有希望但未开发的方向,并提出实用的建议以实现更多的多维研究。我们打开注释的结果,以在https://github.com/google-research/url-nlp上进行进一步的分析

The prototypical NLP experiment trains a standard architecture on labeled English data and optimizes for accuracy, without accounting for other dimensions such as fairness, interpretability, or computational efficiency. We show through a manual classification of recent NLP research papers that this is indeed the case and refer to it as the square one experimental setup. We observe that NLP research often goes beyond the square one setup, e.g, focusing not only on accuracy, but also on fairness or interpretability, but typically only along a single dimension. Most work targeting multilinguality, for example, considers only accuracy; most work on fairness or interpretability considers only English; and so on. We show this through manual classification of recent NLP research papers and ACL Test-of-Time award recipients. Such one-dimensionality of most research means we are only exploring a fraction of the NLP research search space. We provide historical and recent examples of how the square one bias has led researchers to draw false conclusions or make unwise choices, point to promising yet unexplored directions on the research manifold, and make practical recommendations to enable more multi-dimensional research. We open-source the results of our annotations to enable further analysis at https://github.com/google-research/url-nlp

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源