论文标题
RGB-D显着对象检测的动态消息传播网络
Dynamic Message Propagation Network for RGB-D Salient Object Detection
论文作者
论文摘要
本文通过控制RGB图像和功能级别上的深度图之间的消息,并探索有关RGB和深度特征的远程语义上下文和几何信息,以介绍RGB-D显着对象检测的新型深神经网络框架。为此,我们通过图神经网络和可变形的卷积制定动态消息传播(DMP)模块,以动态学习上下文信息并自动预测消息传播控制的过滤重量和亲和力矩阵。我们将该模块进一步嵌入基于暹罗的网络中,分别处理RGB图像和深度图,并设计多级特征融合(MFF)模块,以探索精制的RGB和深度特征之间的跨级信息。与用于RGB-D显着对象检测的六个基准数据集上的17种最先进的方法相比,实验结果表明,我们的方法在定量和视觉上都优于其他所有方法。
This paper presents a novel deep neural network framework for RGB-D salient object detection by controlling the message passing between the RGB images and depth maps on the feature level and exploring the long-range semantic contexts and geometric information on both RGB and depth features to infer salient objects. To achieve this, we formulate a dynamic message propagation (DMP) module with the graph neural networks and deformable convolutions to dynamically learn the context information and to automatically predict filter weights and affinity matrices for message propagation control. We further embed this module into a Siamese-based network to process the RGB image and depth map respectively and design a multi-level feature fusion (MFF) module to explore the cross-level information between the refined RGB and depth features. Compared with 17 state-of-the-art methods on six benchmark datasets for RGB-D salient object detection, experimental results show that our method outperforms all the others, both quantitatively and visually.