论文标题
实时情绪分类和预测的混合面部表达识别(FER2013)模型
Hybrid Facial Expression Recognition (FER2013) Model for Real-Time Emotion Classification and Prediction
论文作者
论文摘要
面部表达识别是大多数领域的重要研究主题,从人工智能和游戏到人类计算机互动(HCI)和心理学。本文提出了一个用于面部表达识别的混合模型,该模型包括深度卷积神经网络(DCNN)和HAAR级联深度学习体系结构。目的是将实时和数字面部图像分类为所考虑的七个面部情感类别之一。这项研究中采用的DCNN具有更多的卷积层,恢复激活功能以及多个内核,以增强滤波深度和面部特征提取。此外,HAAR级联模型也被用来检测实时图像和视频帧中的面部特征。来自Kaggle存储库(FER-2013)的灰度图像,然后利用图形处理单元(GPU)计算以加快培训和验证过程。预处理和数据增强技术用于提高培训效率和分类性能。实验结果表明,与最先进的实验和研究相比,分类性能有了显着改善的分类性能。同样,与其他常规模型相比,本文验证了所提出的体系结构在分类性能方面表现出色,提高了6%,总计高达70%的精度,并且执行时间较小,为2098.8S。
Facial Expression Recognition is a vital research topic in most fields ranging from artificial intelligence and gaming to Human-Computer Interaction (HCI) and Psychology. This paper proposes a hybrid model for Facial Expression recognition, which comprises a Deep Convolutional Neural Network (DCNN) and Haar Cascade deep learning architectures. The objective is to classify real-time and digital facial images into one of the seven facial emotion categories considered. The DCNN employed in this research has more convolutional layers, ReLU Activation functions, and multiple kernels to enhance filtering depth and facial feature extraction. In addition, a haar cascade model was also mutually used to detect facial features in real-time images and video frames. Grayscale images from the Kaggle repository (FER-2013) and then exploited Graphics Processing Unit (GPU) computation to expedite the training and validation process. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. The experimental results show a significantly improved classification performance compared to state-of-the-art (SoTA) experiments and research. Also, compared to other conventional models, this paper validates that the proposed architecture is superior in classification performance with an improvement of up to 6%, totaling up to 70% accuracy, and with less execution time of 2098.8s.