论文标题

耦合表面和内部波电流和底部不均匀的耦合表面和内波的模型

Hamiltonian model for coupled surface and internal waves over currents and uneven bottom

论文作者

Fan, Lili, Liu, Ruonan, Gao, Hongjun

论文摘要

检查了一种与表面波相互作用,电流和不平坦的底部相互作用的内部水波传播的哈密顿模型。使用所谓的Dirichlet-Neumann运算符,水浪系统以哈密顿式形式表达,因此内波和表面波的运动由哈密顿公式确定。从哈密顿的动力学表述中选择了变量的适当缩放,并采用了哈密顿扰动理论,我们得出具有可变系数的KDV型方程,这取决于底层的形状,以描述内部波。

A Hamiltonian model for the propagation of internal water waves interacting with surface waves, a current and an uneven bottom is examined. Using the so-called Dirichlet-Neumann operators, the water wave system is expressed in the Hamiltonian form, and thus the motions of the internal waves and surface waves are determined by the Hamiltonian formulation. Choosing an appropriate scaling of the variables and employing the Hamiltonian perturbation theory from Hamiltonian formulation of the dynamics, we derive a KdV-type equation with variable coefficients depending on the bottom topography to describe the internal waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源