论文标题
具有异质节点活性水平的意见动力学的有界信心模型
A Bounded-Confidence Model of Opinion Dynamics with Heterogeneous Node-Activity Levels
论文作者
论文摘要
基于代理的意见动力学模型使人们可以检查实体之间的意见传播,并研究诸如共识,两极化和破碎等现象。通过研究社交网络上的意见动态模型,可以探索网络结构对这些现象的影响。在社交网络中,有些人比其他人更频繁地分享他们的想法和观点。这些差异可能来自异质的社会,异质活动水平,参与社交媒体平台时分享意见的不同流行率或其他类别。为了检查这种异质性对意见动力学的影响,我们通过结合节点权重来概括意见动力学的偏爱 - 韦斯布赫(DW)有界信心模型(BCM)。节点的权重使我们能够以不同的相互作用概率对代理进行建模。使用数值模拟,我们系统地研究了节点权重的效果(使用各种网络结构和节点权量分布),我们将其随机分配给节点。我们证明,与基线DW模型相比,引入异质节点权重导致更长的收敛时间和更大的意见分裂。我们BCM中的节点权重允许人们考虑各种社会学情景,其中代理具有与其他代理商相互作用的异质概率。
Agent-based models of opinion dynamics allow one to examine the spread of opinions between entities and to study phenomena such as consensus, polarization, and fragmentation. By studying a model of opinion dynamics on a social network, one can explore the effects of network structure on these phenomena. In social networks, some individuals share their ideas and opinions more frequently than others. These disparities can arise from heterogeneous sociabilities, heterogeneous activity levels, different prevalences to share opinions when engaging in a social-media platform, or something else. To examine the impact of such heterogeneities on opinion dynamics, we generalize the Deffuant--Weisbuch (DW) bounded-confidence model (BCM) of opinion dynamics by incorporating node weights. The node weights allow us to model agents with different probabilities of interacting. Using numerical simulations, we systematically investigate (using a variety of network structures and node-weight distributions) the effects of node weights, which we assign uniformly at random to the nodes. We demonstrate that introducing heterogeneous node weights results in longer convergence times and more opinion fragmentation than in a baseline DW model. The node weights in our BCM allow one to consider a variety of sociological scenarios in which agents have heterogeneous probabilities of interacting with other agents.