论文标题
RF-LIO:在高动态环境中删除优先耦合的激光雷达惯性探针
RF-LIO: Removal-First Tightly-coupled Lidar Inertial Odometry in High Dynamic Environments
论文作者
论文摘要
同时定位和映射(SLAM)被认为是智能车辆和移动机器人的重要功能。但是,当前的大多数LiDAR SLAM方法都是基于静态环境的假设。因此,在具有多个移动对象的动态环境中的本地化实际上是不可靠的。本文提出了一个动态的SLAM框架RF-LIO,该框架在Lio-SAM上构建,该框架添加了自适应多分辨率范围图像,并使用紧密耦合的LIDAR LIDAR惯性探测器首先删除移动的对象,然后将激光镜扫描与子束相匹配。因此,即使在高动态环境中,它也可以获得准确的姿势。在自收集的数据集和打开的UrbanLoco数据集上评估了提出的RF-LIO。高动态环境中的实验结果表明,与壤土和LIO-SAM相比,所提出的RF-LIO的绝对轨迹精度分别可以提高90%和70%。 RF-LIO是高动态环境中最先进的大满贯系统之一。
Simultaneous Localization and Mapping (SLAM) is considered to be an essential capability for intelligent vehicles and mobile robots. However, most of the current lidar SLAM approaches are based on the assumption of a static environment. Hence the localization in a dynamic environment with multiple moving objects is actually unreliable. The paper proposes a dynamic SLAM framework RF-LIO, building on LIO-SAM, which adds adaptive multi-resolution range images and uses tightly-coupled lidar inertial odometry to first remove moving objects, and then match lidar scan to the submap. Thus, it can obtain accurate poses even in high dynamic environments. The proposed RF-LIO is evaluated on both self-collected datasets and open Urbanloco datasets. The experimental results in high dynamic environments demonstrate that, compared with LOAM and LIO-SAM, the absolute trajectory accuracy of the proposed RF-LIO can be improved by 90% and 70%, respectively. RF-LIO is one of the state-of-the-art SLAM systems in high dynamic environments.