论文标题
晶格放松的电子结构交替扭转TNG-Multilayer石墨烯:从几层到散装的质量
Electronic structure of lattice relaxed alternating twist tNG-multilayer graphene: from few layers to bulk AT-graphite
论文作者
论文摘要
我们计算n = 3、4、5、6、8、10、20层和大量交替扭转(在)石墨系统的aa'aa'...-堆叠交替的扭转n层(TNG)石墨烯的电子结构,其中晶状体弛豫是通过分子动力学模拟模拟晶状体模型的。我们表明,对称的AA'AA'...在所有层间滑动几何形状中,堆叠在逐渐添加的层中是最高n = 6的层次。晶格弛豫可以增强电子孔不对称性,并相对于用固定的隧道强度计算的魔法角度,我们可以从几层量化到散装物质。如果没有垂直的电场,最大的魔法角平面状态位于中间周围,沿1D链模型的最大特征值本征态,而密度将密度重新分布到外层的较小的魔法扭曲角度,对应于1D链中较高的有效Bilayers。垂直的电场将电子结构分解为具有重新归一化的费米速度的$ n $ dirac频段,具有不同的均匀ODD带分裂行为,显示了n = 4的间隙,而对于奇数层,dirac圆锥形在平坦带隙之间保留。从状态的密度估计的魔术角误差公差逐渐从T2G中的$ 0.05^{\ circ} $逐渐扩展到最高$ 0.2^{\ circ} $,因此可以在多层方面具有更大的灵活性。将TNG脱钩到T2G中,与1D层链的特征值成正比的不同层间隧穿允许将TNG-Multilayers频段映射到不同$ k_z $值的定期散装式宽度段。我们还获得了高达50 〜t的磁场的量子厅状态中状态的Landau水平密度,并确认存在几乎平坦的频带,我们可以通过在n> 3系统中应用电场来形成抑制的状态间隙区域密度。
We calculate the electronic structure of AA'AA'...-stacked alternating twist N-layer (tNG) graphene for N = 3, 4, 5, 6, 8, 10, 20 layers and bulk alternating twist (AT) graphite systems where the lattice relaxations are modeled by means of molecular dynamics simulations. We show that the symmetric AA'AA'... stacking is energetically preferred among all interlayer sliding geometries for progressively added layers up to N=6. Lattice relaxations enhance electron-hole asymmetry, and reduce the magic angles with respect to calculations with fixed tunneling strengths that we quantify from few layers to bulk AT-graphite. Without a perpendicular electric field, the largest magic angle flat-band states locate around the middle following the largest eigenvalue eigenstate in a 1D-chain model of layers, while the density redistributes to outer layers for smaller magic twist angles corresponding to higher order effective bilayers in the 1D chain. A perpendicular electric field decouples the electronic structure into $N$ Dirac bands with renormalized Fermi velocities with distinct even-odd band splitting behaviors, showing a gap for N=4 while for odd layers a Dirac cone remains between the flat band gaps. The magic angle error tolerance estimated from density of states maxima expand progressively from $0.05^{\circ}$ in t2G to up to $0.2^{\circ}$ in AT-graphite, hence allowing a greater flexibility in multilayers. Decoupling of tNG into t2G with different interlayer tunneling proportional to the eigenvalues of a 1D layers chain allows to map tNG-multilayers bands onto those of periodic bulk AT-graphite's at different $k_z$ values. We also obtain the Landau level density of states in the quantum Hall regime for magnetic fields of up to 50~T and confirm the presence of nearly flat bands around which we can develop suppressed density of states gap regions by applying an electric field in N > 3 systems.