论文标题

特殊拉格朗日电位方程中比较原理的反例

Counterexamples to the comparison principle in the special Lagrangian potential equation

论文作者

Brustad, Karl K.

论文摘要

对于每个$ k = 0,\ dots,n $,我们构建一个连续阶段$ f_k $,带有$ f_k(0)=(n-2k)\fracπ{2} $,以及粘度子和supersolutions $ v_k $,$ v_k $,$ u_k $,e elliptic pde pde pde pde $ \ sum_ = 1} i = 1}^n \ rctan( f_k(x)$使得$ v_k-u_k $在原点上具有孤立的最大值。 对于任意连续阶段$ f \colonΩ\ to(-nπ/2,nπ/2)$,比较原理是否会在二阶方程中保持比较原理是一个空的问题。我们的例子表明不是。

For each $k = 0,\dots,n$ we construct a continuous phase $f_k$, with $f_k(0) = (n-2k)\fracπ{2}$, and viscosity sub- and supersolutions $v_k$, $u_k$, of the elliptic PDE $\sum_{i=1}^n \arctan(λ_i(D^2 w)) = f_k(x)$ such that $v_k-u_k$ has an isolated maximum at the origin. It has been an open question whether the comparison principle would hold in this second order equation for arbitrary continuous phases $f\colonΩ\to (-nπ/2,nπ/2)$. Our examples show it does not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源